Rigidity in social and emotional memory in the R6/2 mouse model of Huntington's disease.

نویسندگان

  • Alessandro Ciamei
  • A Jennifer Morton
چکیده

Four experiments were conducted to examine social and emotional memory in the R6/2 transgenic mouse model of Huntington's disease. First, R6/2 mice were tested in a social transmission of food preference task where they had to acquire a preference for a flavoured food (acquisition) and subsequently to learn a preference for a different flavour (shifted reinforcement). R6/2 mice performed well in the acquisition trial. However, they were impaired in the shifted reinforcement trial and perseverated on the first preference learned. Second, mice were trained in an inhibitory avoidance paradigm, with either one or two footshocks delivered during the training. WT mice given one footshock showed retention levels lower than those of mice trained with two footshocks. By contrast, there was no difference in retention levels of R6/2 mice given either one or two footshocks. Third, mice were tested in an active avoidance task that paired a mild footshock with a warning light. R6/2 mice had a strong age-dependent deficit in this task. Finally, mice were tested in a conditioned taste aversion task that paired a saccharine solution with a nausea-inducing agent (LiCl). R6/2 mice displayed normal aversion, however this was not extinguished following repeated exposure to saccharine solution alone. Our data show that while R6/2 mice have functional hippocampus-based memory, they have deficits in striatum-based memory skills. Further, social and emotional memories appear to be encoded in a rigid way that is not influenced by subsequent learning or by arousal levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progressive imbalance in the interaction between spatial and procedural memory systems in the R6/2 mouse model of Huntington's disease.

When Huntington's disease (HD) patients are tested on cognitive tasks that involve both striatal and hippocampal memory systems, a decline in their striatal function is compensated for by an increase in hippocampal activity that allows these patients to achieve an optimal performance [Voermans, N. C., Petersson, K. M., Daudley, L., Weber, B., van Spaendonck, K. P., Kremer, H. P. H., et al. (200...

متن کامل

Genetic Deficiency of Complement Component 3 Does Not Alter Disease Progression in a Mouse Model of Huntington's Disease.

Several genes and proteins of the complement cascade are present at elevated levels in brains of patients with Huntington's disease (HD). The complement cascade is well characterized as an effector arm of the immune system, and in the brain it is important for developmental synapse elimination. We hypothesized that increased levels of complement in HD brains contributes to disease progression, ...

متن کامل

A ketogenic diet delays weight loss and does not impair working memory or motor function in the R6/2 1J mouse model of Huntington's disease.

Ketogenic diets are high in fat and low in carbohydrates, and have long been used as an anticonvulsant therapy for drug-intractable and pediatric epilepsy. Additionally, ketogenic diets have been shown to provide neuroprotective effects against acute and chronic brain injury, including beneficial effects in various rodent models of neurodegeneration. Huntington's disease is a progressive neurod...

متن کامل

Mitochondrial calcium uptake capacity as a therapeutic target in the R6/2 mouse model of Huntington's disease.

Huntington's disease (HD) is an incurable autosomal-dominant neurodegenerative disorder initiated by an abnormally expanded polyglutamine domain in the huntingtin protein. It is proposed that abnormal mitochondrial Ca2+ capacity results in an increased susceptibility to mitochondrial permeability transition (MPT) induction that may contribute significantly to HD pathogenesis. The in vivo contri...

متن کامل

A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease.

Huntington's disease is a genetic disease caused by a single mutation. It is characterized by progressive movement, emotional and cognitive deficits. R6/2 mice transgenic for exon 1 of the HD gene with 150+ CAG repeats have a progressive neurological phenotype, including deterioration in cognitive function. The mechanism underlying the cognitive deficits in R6/2 mice is unknown, but dysregulate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of learning and memory

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 2008